25,394 research outputs found

    Micrometre-scale refrigerators

    Get PDF
    A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years

    Perfusion Cell Seeding and Expansion in Dual Mechanical Stimulation Bioreactor for In Vitro Tissue Development

    Get PDF
    BACKGROUND: Engineered tissues are an exciting potential source of small diameter vascular grafts due to limited supply and patency of available alternatives. Engineered tissue vascular grafts (ETVGs) will provide physiological function that resembles native arteries and maintain the required mechanical properties as they integrate with host tissue. Mechanical stimulation during incubation encourages proper cell alignment and increases extracellular matrix deposition. The enhanced organization of the engineered tissue leads to improved compliance over synthetic alternatives without sacrificing strength and may lead to better integration in vivo. METHODS: We have developed a bioreactor that mechanically trains grafts during incubation. To test the seeding efficiency of the bioreactor, rat vascular smooth muscle cells (VSMC) were seeded onto electrospun PCL scaffolds by perfusion at various cell concentrations then incubated Page | 15 for 1 week under static conditions. We assessed gross morphology with H&E; collagen with picrosirius red; and VSMC density with DAPI. ETVGs were further evaluated with mechanical testing and scanning electron microscopy to evaluate mechanical and microstructural properties. RESULTS: Cells were successfully seeded evenly onto the luminal surface of electrospun PCL scaffolds. Cells remained viable and continued to proliferate and deposit ECM throughout incubation. CONCLUSIONS: Progress in the ETVG paradigm requires a systematic approach toward better understanding of the cause-effect interplay between implant properties, host reactions, and their modulation with controllable parameters. Future directions involve the assessment of the effects of mechanical training on growth and remodeling of engineered tissues in vitro and subsequent effects on the foreign body response post-implantation in a murine model.https://scholarscompass.vcu.edu/gradposters/1115/thumbnail.jp

    On Maximum Margin Hierarchical Classification

    No full text
    We present work in progress towards maximum margin hierarchical classification where the objects are allowed to belong to more than one category at a time. The classification hierarchy is represented as a Markov network equipped with an exponential family defined on the edges. We present a variation of the maximum margin multilabel learning framework, suited to the hierarchical classification task and allows efficient implementation via gradient-based methods. We compare the behaviour of the proposed method to the recently introduced hierarchical regularized least squares classifier as well as two SVM variants in Reuter's news article classification

    Structure of the regulatory domain of the LysR family regulator NMB2055 (MetR-like protein) from Neisseria meningitidis

    Get PDF
    Copyright @ 2012 International Union of CrystallographyThe crystal structure of the regulatory domain of NMB2055, a putative MetR regulator from Neisseria meningitidis, is reported at 2.5 Å resolution. The structure revealed that there is a disulfide bond inside the predicted effector-binding pocket of the regulatory domain. Mutation of the cysteines (Cys103 and Cys106) that form the disulfide bond to serines resulted in significant changes to the structure of the effector pocket. Taken together with the high degree of conservation of these cysteine residues within MetR-related transcription factors, it is suggested that the Cys103 and Cys106 residues play an important role in the function of MetR regulators.This study is funded by the Medical Research Council, with additional finance from the Biotechnology and Biological Science Research Council

    Immune cells and preterm labour:do invariant NKT cells hold the key?

    Get PDF
    We have developed our original made-to-measure (M2M) algorithm, PRIMAL, with the aim of modelling the Galactic disc from upcoming Gaia data. From a Milky Way like N-body disc galaxy simulation, we have created mock Gaia data using M0III stars as tracers, taking into account extinction and the expected Gaia errors. In PRIMAL, observables calculated from the N-body model are compared with the target stars, at the position of the target stars. Using PRIMAL, the masses of the N-body model particles are changed to reproduce the target mock data, and the gravitational potential is automatically adjusted by the changing mass of the model particles. We have also adopted a new resampling scheme for the model particles to keep the mass resolution of the N-body model relatively constant. We have applied PRIMAL to this mock Gaia data and we show that PRIMAL can recover the structure and kinematics of a Milky Way like barred spiral disc, along with the apparent bar structure and pattern speed of the bar despite the galactic extinction and the observational errors

    Mars: Seasonally variable radar reflectivity

    Get PDF
    The 1971/1973 Mars data set acquired by the Goldstone Solar System Radar was analyzed. It was established that the seasonal variations in radar reflectivity thought to occur in only one locality on the planet (the Solis Lacus radar anomaly) occur, in fact, over the entire subequatorial belt observed by the Goldstone radar. Since liquid water appears to be the most likely cause of the reflectivity excursions, a permanent, year-round presence of subsurface water (frozen or thawed) in the Martian tropics can be inferred

    Hybrid receiver study

    Get PDF
    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions

    Guide to the use of Mariner images

    Get PDF
    Planetary imaging from unmanned spacecraft, almost exclusively done by digital systems, is examined. The Mars Mariner 9 television camera, representative of such systems, is considered. Each image consists of 700 lines, each containing 832 picture elements, or pixels. Each pixel contains nine binary bits of information capable of displaying 512 discrete brightness levels. Several problems inherent in television systems are discussed. These include nonuniform target response, residual images, noise, and blemishes. These defects can be removed to some extent by decalibration of the image. The final product is geometrically corrected for camera distortion and photometrically corrected. Several versions of the decalibrated images are available. The most generally useful are the geometrically corrected images with enhanced contrast. The Mariner 10 imaging of Mercury is briefly discussed
    corecore